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The theory of partial inductance is a powerful tool 
for understanding why digital circuits radiate and in 
designing strategies to mitigate this radiation. In fact, it 

can be fairly said that nothing is more central to understanding 
EMI phenomena than understanding of the theory of partial 
inductance. 

We will begin with the classic definition of inductance. 
Inductance is defined as the ratio of magnetic flux that passes 
through a surface bounded by a closed loop to the magnitude 
of the current generating that flux. Mathematically: 

Where: 

L = Inductance in Henries

ψ = Magnetic flux through a surface bounded by a closed loop

I = Current generating ψ in Amps 

The “surface bounded by a closed path” could be any surface, 
but often what is meant is the area enclosed by a planar wire 
loop. Strictly speaking, inductance is only defined for closed 
paths, that is complete loops. However, physicists have 
found it useful to assign a partial inductance to portions of a 
loop. The concept is illustrated in Figure 1. Current flowing 
in a loop creates a magnetic field passing through a surface 
bounded by the loop itself. That allows calculation of the 
loop’s inductance from Equation 1. In order to assign a partial 
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Figure 1: A loop of wire carrying current I has an inductance 
equal to the ratio of the magnetic flux through the loop 

divided by the current. Here, lines of flux are shown either 
as moving into the plane of the page (cross within a circle) 

or out of it (dot within a circle). A portion of the loop can be 
assigned a partial inductance by calculating the flux through 

the pie shaped area outside the loop. 
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Figure 2: The return plane has a partial inductance and 
therefore will exhibit a voltage drop Vr across it. This voltage 

drop causes wires connected to the return to radiate. 

Figure 3: The partial inductance of a straight segment of 
wire can be calculated by taking the flux through the shaded 

area and dividing it by the current. 

Figure 4: A pair of wires (a) carrying opposing currents will produce opposing fields in the shaded areas.  
Taking the net flux through the shaded area above wire 1 and dividing by the current on wire 1 allows us to  

compute the “total” partial inductance of that segment of wire 1. In the same manner, the partial inductance of  
a segment of a return plane can be calculated by taking the flux through the shaded area below the plane  

as in (b) and dividing by the current passing through the plane. 
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inductance to a portion of the loop, we can divide 
the loop into segments and, with a fair degree of 
physical accuracy, state that each segment has 
its own partial inductance. Adding the partial 
inductances of the segments together equals the 
total inductance. 

To assign a partial inductance to a segment of a 
loop, the segment is identified and then an area, 
either inside or outside the loop, is assigned 
as shown in Figure 1. Measuring the total flux 
through either of these areas and dividing it 
by the current in the segment yields the partial 
inductance. Usually the area outside the loop y
is used. 

The concept of partial inductance is useful for 
solving problems that would otherwise seem 
intractable. Take, for example, the calculation 
of the inductance of a single straight, infinitely 
long wire. In theory, only loops have inductance. 
Nonetheless, we have all experienced situations 
where a wire seems to have an inductance per 
unit length even where the current loop seems 
impossible to define. Using the concept of partial 
inductance, however, we calculate the drop 
expected per unit length of wire due to inductance 
(Figure 3). The flux through the area shown in 
Figure 3 – which is defined as a surface of infinite 
length perpendicular to a selected segment of 
the wire – divided by the current in that segment 
yields the partial inductance. 

So far we have been talking about the inductance 
of a single wire isolated in space. Wires however, 
are rarely so isolated. Take, for example, the two 
parallel wires shown in Figure 4. Here, the partial 
inductance of a segment is due both to the flux 
generated by the current flowing in wire 1 and the 
flux generated by the current flowing in wire 2. 

Lp tot = L11 − L12 

Where: 
Lp tot = “Total” partial inductance of a segment of 
wire 1.
L11 = Partial inductance of wire 1 due to the flux 
generated by the current on wire 1. 
L12 = Partial inductance of wire 1 due to the flux 
generated by the current on wire 2. 

L11 is known as the self partial inductance. 
The term L12 is known as the mutual partial 
inductance. The total partial inductance of a 

Figure 5: An ideal shielded cable (a) exhibits no return inductance. 
However, all practical shielded cables have some flux leakage (b). The 
flux around the shield causes it to exhibit an inductance and a voltage 
drop as shown in (c). This voltage drop can cause the shield to radiate. 

Figure 6: An open wire transmission line produces a classical dipole like 
magnetic flux pattern as shown in (a). The pattern produced by a wire 
over an infinite return plane (b) is the same (at least above the plane). 
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segment, Lp tot, is the sum of the self and mutual inductances. 
Lp tot is sometimes known as the effective inductance, Leff. 

The sign on the right side of this equation is a function of the 
direction of the current in wire 2. If the current in wire 2 flows 
in the same direction as the current in wire 1 then the equation 
becomes: 

Lp tot = L11 + L12 

The effect of wire 2 is then to raise the inductance of wire 1. 

For symmetrical structures such as the two wires of y
Figure 4(a), the calculation of partial inductance is 
straightforward. For structures that are not symmetrical, 
however, such as the classic case of a wire over a plane 
(Figure 4(b)), the calculations become considerably more 
complex. Nonetheless, some important insight can be gained 
by keeping these things in mind: 

1.	 The total inductance of any loop can, by definition, be 
calculated by taking the flux through a surface bounded by 
the loop and dividing it by the current. 

2.	 The partial inductance of a segment of a signal wire 
(Figure 4(b)) can be calculated by mapping a rectangular 
area outside the loop formed by the signal wire and the 
plane as shown. Calculating the flux in this area and 
dividing by the current yields the partial inductance y
of that segment. 

Figure 7: Real return planes are finite in size, so some flux 
leaks around the edges of the return plane, accounting for 

its partial inductance. 

Figure 8: Some common geometries. The return partial 
inductance is tabulated for each in Table 1. 

Figure 9: Gaps (a) and holes (c) can raise the return plane’s 
impedance. Figure 9 (b) is a side view of the arrangement. 
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3.	 The partial inductance of a segment of the return plane is 
calculated by identifying a rectangular area beneath the 
return plane and calculating the flux through it. That flux 
divided by the current yields the partial inductance of that 
segment of the plane. 

The larger the return plane’s partial inductance, the greater 
the radiation that is likely to result. Consider the case of a 
digital clock driving a load (Figure 2). Any inductance in the 
return plane will cause a voltage drop across it. That voltage 
will cause wires attached to the return plane to radiate like an 
antenna. Neglecting resistances, the voltage 
drop is equal to: 

Vr = jω L p I r

Where: 

Vr = Voltage dropped across the return 
plane 

ω = Frequency in radians per second = 2πf 

Lp = Partial inductance of the return plane 

Ir = Current through the return plane 

Controlling the partial inductance of 
the return plane is therefore of great 
importance in controlling emissions. 
Making the return plane infinitely wide will 
result in a return plane partial inductance 
of zero. An infinitely wide return plane will 
prevent any lines of magnetic flux from 
passing through it.

Note that the same logic applies to the case 
of the ideal shielded cable (Figure 5(a)).y
Here, all the lines of flux created by the 
center conductor are trapped within the 
shield. No lines of flux extend beyond the 
shield and therefore the partial inductance 
of the shield is zero. The center conductor, 
through the sum of its partial inductances, 
represents all the inductance of a circuit 
formed by the center conductor and the 
shield. 

In the case of a shielded cable, any flux 
that is lost (that is, which circulates around 
the shield rather than within it) accounts 
for partial inductance of the shield and will 
result in a voltage drop across a portion of 
the shield. That voltage will drive the rest 
of the cable, and devices attached to it, as 
if they were antennas. The same concept 
of “lost flux” can be applied to the case 

of a wire over a plane. Flux that wraps around the plane is 
essentially lost and minimizing this lost flux y
is a key to minimizing the voltage drop across the y
plane (Figure 7). 

In a 1995 paper [2] Leferink tabulated the predicted partial 
inductances of the return conductors in various circuits 
(Figures 8 and 9 and Table 1). To make things manageable, 
Leferink had to make a number of assumptions. These were: 
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1.	 All of the marked dimensions In Figures 8 and 9 are 
considered to be small compared to the wavelength of 
interest. 

2.	 The current distribution in the signal conductor (or to use 
Leferink’s terminology, the Flux Generating Conductor, 
FGC) is considered to be uniform. 

3.	 The length of any transmission line formed is much greater 
than all the other dimensions. 

4.	 The radius r where shown or the thickness t are considered 
to be equal for the signal conductor and the return 
conductor. 

The formulas allow us to predict, to at least a first 
approximation, the partial inductance associated with some 
common geometries. Take, for example, a trace suspended 
above a plane (Figure 8(c)). The formulas predict that the 
effective inductance falls as the width of the plane is incresed. 
We also can calculate the effect of moving a signal conductor 
closer to the edge of a plane (Figure 8(d)). Here the formulas 
predict that the inductance of the return plane will rise as 
the signal conductor gets closer to the edge of the plane. 
However, this rise is small until the signal conductor gets 
quite close to the edge (Figure 10). 

Table 1

Note: l in the equations above is the length of the return or a portion of the return. It does not appear in Figure 8. Inductances 
are in Henries. In terms of inductance per unit length, the term (µ/2π)=2nH/cm. [2]
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Finally, we can use the formulas to predict the increase 
in a return plane’s inductance due to holes or a gap in the 
return plane. For a gap whose dimensions are l = 10mm, 
g = 50mm and t = 0.035mm, Lgap = 14.5nH. For a plane 
studded with holes of r = 1mm and d = 1.6mm, each hole 
over which the signal wire passes will contribute 17 pH. 
Small holes in the return plane do not tend to increase 
inductance markedly, though gaps do. n
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Figure 10: Moving a trace towards the edge of a return 
plane raises its inductance. 


