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Theytheoryyofypartialyinductanceyisyaypowerfulytooly
foryunderstandingywhyydigitalycircuitsyradiateyandyiny
designingystrategiesytoymitigateythisyradiation.yInyfact,yity

canybeyfairlyysaidythatynothingyisymoreycentralytoyunderstandingy
EMIyphenomenaythanyunderstandingyofytheytheoryyofypartialy
inductance.y

Weywillybeginywithytheyclassicydefinitionyofyinductance.y
Inductanceyisydefinedyasytheyratioyofymagneticyfluxythatypassesy
throughyaysurfaceyboundedybyyayclosedyloopytoytheymagnitudey
ofytheycurrentygeneratingythatyflux.yMathematically:y

Where:y

Ly=yInductanceyinyHenries

ψy=yMagneticyfluxythroughyaysurfaceyboundedybyyayclosedyloop

Iy=yCurrentygeneratingyψyinyAmpsy

They“surfaceyboundedybyyayclosedypath”ycouldybeyanyysurface,y
butyoftenywhatyisymeantyisytheyareayenclosedybyyayplanarywirey
loop.yStrictlyyspeaking,yinductanceyisyonlyydefinedyforyclosedy
paths,ythatyisycompleteyloops.yHowever,yphysicistsyhavey
foundyityusefulytoyassignyaypartialyinductanceytoyportionsyofyay
loop.yTheyconceptyisyillustratedyinyFigurey1.yCurrentyflowingy
inyayloopycreatesyaymagneticyfieldypassingythroughyaysurfacey
boundedybyytheyloopyitself.yThatyallowsycalculationyofythey
loop’syinductanceyfromyEquationy1.yInyorderytoyassignyaypartialy
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Figure 1: A loop of wire carrying current I has an inductance 
equal to the ratio of the magnetic flux through the loop 

divided by the current� Here, lines of flux are shown either 
as moving into the plane of the page (cross within a circle) 

or out of it (dot within a circle)� A portion of the loop can be 
assigned a partial inductance by calculating the flux through 

the pie shaped area outside the loop� 
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Figure 2: The return plane has a partial inductance and 
therefore will exhibit a voltage drop Vr across it� This voltage 

drop causes wires connected to the return to radiate� 

Figure 3: The partial inductance of a straight segment of 
wire can be calculated by taking the flux through the shaded 

area and dividing it by the current� 

Figure 4: A pair of wires (a) carrying opposing currents will produce opposing fields in the shaded areas�  
Taking the net flux through the shaded area above wire 1 and dividing by the current on wire 1 allows us to  

compute the “total” partial inductance of that segment of wire 1� In the same manner, the partial inductance of  
a segment of a return plane can be calculated by taking the flux through the shaded area below the plane  

as in (b) and dividing by the current passing through the plane� 
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inductanceytoyayportionyofytheyloop,yweycanydividey
theyloopyintoysegmentsyand,ywithyayfairydegreeyofy
physicalyaccuracy,ystateythatyeachysegmentyhasy
itsyownypartialyinductance.yAddingytheypartialy
inductancesyofytheysegmentsytogetheryequalsythey
totalyinductance.y

Toyassignyaypartialyinductanceytoyaysegmentyofyay
loop,ytheysegmentyisyidentifiedyandythenyanyarea,y
eitheryinsideyoryoutsideytheyloop,yisyassignedy
asyshownyinyFigurey1.yMeasuringytheytotalyfluxy
throughyeitheryofytheseyareasyandydividingyity
byytheycurrentyinytheysegmentyyieldsytheypartialy
inductance.yUsuallyytheyareayoutsideytheyloopyy
isyused.y

Theyconceptyofypartialyinductanceyisyusefulyfory
solvingyproblemsythatywouldyotherwiseyseemy
intractable.yTake,yforyexample,ytheycalculationy
ofytheyinductanceyofyaysingleystraight,yinfinitelyy
longywire.yInytheory,yonlyyloopsyhaveyinductance.y
Nonetheless,yweyhaveyallyexperiencedysituationsy
whereyaywireyseemsytoyhaveyanyinductanceypery
unitylengthyevenywhereytheycurrentyloopyseemsy
impossibleytoydefine.yUsingytheyconceptyofypartialy
inductance,yhowever,yweycalculateytheydropy
expectedyperyunitylengthyofywireydueytoyinductancey
(Figurey3).yTheyfluxythroughytheyareayshownyiny
Figurey3y–ywhichyisydefinedyasyaysurfaceyofyinfinitey
lengthyperpendicularytoyayselectedysegmentyofy
theywirey–ydividedybyytheycurrentyinythatysegmenty
yieldsytheypartialyinductance.y

Soyfaryweyhaveybeenytalkingyaboutytheyinductancey
ofyaysingleywireyisolatedyinyspace.yWiresyhowever,y
areyrarelyysoyisolated.yTake,yforyexample,ytheytwoy
parallelywiresyshownyinyFigurey4.yHere,ytheypartialy
inductanceyofyaysegmentyisydueybothytoytheyfluxy
generatedybyytheycurrentyflowingyinywirey1yandythey
fluxygeneratedybyytheycurrentyflowingyinywirey2.y

Lp tot = L11 − L12 

Where:y
Lpytoty=y“Total”ypartialyinductanceyofyaysegmentyofy
wirey1.
L11y=yPartialyinductanceyofywirey1ydueytoytheyfluxy
generatedybyytheycurrentyonywirey1.y
L12y=yPartialyinductanceyofywirey1ydueytoytheyfluxy
generatedybyytheycurrentyonywirey2.y

L11yisyknownyasytheyself partial inductance.y
TheytermyL12yisyknownyasytheymutual partial 
inductance.yTheytotal partial inductanceyofyay

Figure 5: An ideal shielded cable (a) exhibits no return inductance� 
However, all practical shielded cables have some flux leakage (b)� The 
flux around the shield causes it to exhibit an inductance and a voltage 
drop as shown in (c)� This voltage drop can cause the shield to radiate� 

Figure 6: An open wire transmission line produces a classical dipole like 
magnetic flux pattern as shown in (a)� The pattern produced by a wire 
over an infinite return plane (b) is the same (at least above the plane)� 
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segment,yLpytot,yisytheysumyofytheyselfyandymutualyinductances.y
Lpytotyisysometimesyknownyasytheyeffective inductance,yLeff.y

Theysignyonytheyrightysideyofythisyequationyisyayfunctionyofythey
directionyofytheycurrentyinywirey2.yIfytheycurrentyinywirey2yflowsy
inytheysameydirectionyasytheycurrentyinywirey1ythenytheyequationy
becomes:y

Lp tot = L11 + L12 

Theyeffectyofywirey2yisythenytoyraiseytheyinductanceyofywirey1.y

Forysymmetricalystructuresysuchyasytheytwoywiresyofyy
Figurey4(a),ytheycalculationyofypartialyinductanceyisy
straightforward.yForystructuresythatyareynotysymmetrical,y
however,ysuchyasytheyclassicycaseyofyaywireyoveryayplaney
(Figurey4(b)),ytheycalculationsybecomeyconsiderablyymorey
complex.yNonetheless,ysomeyimportantyinsightycanybeygainedy
byykeepingytheseythingsyinymind:y

1.y Theytotalyinductanceyofyanyyloopycan,ybyydefinition,ybey
calculatedybyytakingytheyfluxythroughyaysurfaceyboundedybyy
theyloopyandydividingyitybyytheycurrent.y

2.y Theypartialyinductanceyofyaysegmentyofyaysignalywirey
(Figurey4(b))ycanybeycalculatedybyymappingyayrectangulary
areayoutsideytheyloopyformedybyytheysignalywireyandythey
planeyasyshown.yCalculatingytheyfluxyinythisyareayandy
dividingybyytheycurrentyyieldsytheypartialyinductanceyy
ofythatysegment.y

Figure 7: Real return planes are finite in size, so some flux 
leaks around the edges of the return plane, accounting for 

its partial inductance� 

Figure 8: Some common geometries� The return partial 
inductance is tabulated for each in Table 1� 

Figure 9: Gaps (a) and holes (c) can raise the return plane’s 
impedance� Figure 9 (b) is a side view of the arrangement� 
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3.y Theypartialyinductanceyofyaysegmentyofytheyreturnyplaneyisy
calculatedybyyidentifyingyayrectangularyareaybeneathythey
returnyplaneyandycalculatingytheyfluxythroughyit.yThatyfluxy
dividedybyytheycurrentyyieldsytheypartialyinductanceyofythaty
segmentyofytheyplane.y

Theylargerytheyreturnyplane’sypartialyinductance,ytheygreatery
theyradiationythatyisylikelyytoyresult.yConsiderytheycaseyofyay
digitalyclockydrivingyayloady(Figurey2).yAnyyinductanceyinythey
returnyplaneywillycauseyayvoltageydropyacrossyit.yThatyvoltagey
willycauseywiresyattachedytoytheyreturnyplaneytoyradiateylikeyany
antenna.yNeglectingyresistances,ytheyvoltagey
dropyisyequalyto:y

Vr = jω L p I r

Where:y

Vry=yVoltageydroppedyacrossytheyreturny
planey

ωy=yFrequencyyinyradiansyperysecondy=y2πfy

Lpy=yPartialyinductanceyofytheyreturnyplaney

Iry=yCurrentythroughytheyreturnyplaney

Controllingytheypartialyinductanceyofy
theyreturnyplaneyisythereforeyofygreaty
importanceyinycontrollingyemissions.y
Makingytheyreturnyplaneyinfinitelyywideywilly
resultyinyayreturnyplaneypartialyinductancey
ofyzero.yAnyinfinitelyywideyreturnyplaneywilly
preventyanyylinesyofymagneticyfluxyfromy
passingythroughyit.

Noteythatytheysameylogicyappliesytoytheycasey
ofytheyidealyshieldedycabley(Figurey5(a)).y
Here,yallytheylinesyofyfluxycreatedybyythey
centeryconductoryareytrappedywithinythey
shield.yNoylinesyofyfluxyextendybeyondythey
shieldyandythereforeytheypartialyinductancey
ofytheyshieldyisyzero.yTheycenteryconductor,y
throughytheysumyofyitsypartialyinductances,y
representsyallytheyinductanceyofyaycircuity
formedybyytheycenteryconductoryandythey
shield.y

Inytheycaseyofyayshieldedycable,yanyyfluxy
thatyisylosty(thatyis,ywhichycirculatesyaroundy
theyshieldyratherythanywithinyit)yaccountsy
forypartialyinductanceyofytheyshieldyandywilly
resultyinyayvoltageydropyacrossyayportionyofy
theyshield.yThatyvoltageywillydriveytheyresty
ofytheycable,yandydevicesyattachedytoyit,yasy
ifytheyywereyantennas.yTheysameyconcepty
ofy“lostyflux”ycanybeyappliedytoytheycasey

ofyaywireyoveryayplane.yFluxythatywrapsyaroundytheyplaneyisy
essentiallyylostyandyminimizingythisylostyfluxyy
isyaykeyytoyminimizingytheyvoltageydropyacrossytheyy
planey(Figurey7).y

Inyay1995ypapery[2]yLeferinkytabulatedytheypredictedypartialy
inductancesyofytheyreturnyconductorsyinyvariousycircuitsy
(Figuresy8yandy9yandyTabley1).yToymakeythingsymanageable,y
Leferinkyhadytoymakeyaynumberyofyassumptions.yTheseywere:y
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1.y AllyofytheymarkedydimensionsyInyFiguresy8yandy9yarey
consideredytoybeysmallycomparedytoytheywavelengthyofy
interest.y

2.y Theycurrentydistributionyinytheysignalyconductory(orytoyusey
Leferink’syterminology,ytheyFluxyGeneratingyConductor,y
FGC)yisyconsideredytoybeyuniform.y

3.y Theylengthyofyanyytransmissionylineyformedyisymuchygreatery
thanyallytheyotherydimensions.y

4.y Theyradiusyrywhereyshownyorytheythicknessytyareyconsideredy
toybeyequalyforytheysignalyconductoryandytheyreturny
conductor.y

Theyformulasyallowyusytoypredict,ytoyatyleastyayfirsty
approximation,ytheypartialyinductanceyassociatedywithysomey
commonygeometries.yTake,yforyexample,yaytraceysuspendedy
aboveyayplaney(Figurey8(c)).yTheyformulasypredictythatythey
effectiveyinductanceyfallsyasytheywidthyofytheyplaneyisyincresed.y
Weyalsoycanycalculateytheyeffectyofymovingyaysignalyconductory
closerytoytheyedgeyofyayplaney(Figurey8(d)).yHereytheyformulasy
predictythatytheyinductanceyofytheyreturnyplaneywillyriseyasy
theysignalyconductorygetsycloserytoytheyedgeyofytheyplane.y
However,ythisyriseyisysmallyuntilytheysignalyconductorygetsy
quiteycloseytoytheyedgey(Figurey10).y

Table 1

Note: l in the equations above is the length of the return or a portion of the return� It does not appear in Figure 8� Inductances 
are in Henries� In terms of inductance per unit length, the term (µ/2π)=2nH/cm� [2]
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Finally, we can use the formulas to predict the increase 
in a return plane’s inductance due to holes or a gap in the 
return plane. For a gap whose dimensions are l = 10mm, 
g = 50mm and t = 0.035mm, Lgap = 14.5nH. For a plane 
studded with holes of r = 1mm and d = 1.6mm, each hole 
over which the signal wire passes will contribute 17 pH. 
Small holes in the return plane do not tend to increase 
inductance markedly, though gaps do. n
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Figure 10: Moving a trace towards the edge of a return 
plane raises its inductance. 


